Mathematical structures in logic Exercise class 4

Logics and varieties of algebras, filters and congruences

March 19, 2017

Recall that a superintuitionistic logic is a set L of propositional formulas such that $L \supseteq IPC$ and L is closed under the rules of (MP) and (Subs).

- (1) Show that the set of superintuionistic logics $\Lambda(\mathbf{IPC})$ forms a bounded lattice with respect to \subseteq . Describe the bounds, meets and joins in this lattice.
- (2) Show that the subvarieties of the variety of Heyting algebras $\Lambda(HA)$ form a lattice with respect to \subseteq . Describe the bounds, meets and joins in this lattice.
- (3) Let L be a superintuitionistic logic. Recall that V_L is the variety axiomatized by $\{\varphi \approx 1 : L \vdash \varphi\}$. Show that for superintuionistic logics L, L' the following holds

$$L \subseteq L'$$
 implies $V_L \supseteq V_{L'}$.

and

 $L \not\subseteq L'$ implies $\mathsf{V}_L \not\supseteq \mathsf{V}_{L'}$.

(Hint: use that L is complete wrt V_L . That is, for each formula φ we have

$$L \vdash \varphi \text{ iff } \mathsf{V}_L \models \varphi \approx 1.$$

(4) Let V be a variety of Heyting algebras. Recall that L_{V} is the least superintuionistic logic containing the set $\{\varphi \leftrightarrow \psi : V \models \varphi \approx \psi\}$. Show that for each variety of Heyting algebras V and each superintuionistic logic L we have

$$V_{L_V} = V$$
 and $L_{V_L} = L$.

- (5) Deduce that the lattice of superintuionistic logics $(\Lambda(\mathbf{IPC}), \subseteq)$ is dually isomorphic to the lattice $(\Lambda(\mathsf{HA}), \subseteq)$ of varieties of Heyting algebras.
- (6) Let A be a Boolean algebra.
 - (a) Show that for each $a \in A$, the set $\uparrow a = \{b \in A : a \leq b\}$ is a filter.
 - (b) Show that $F \subseteq A$ is a filter iff $I = \{\neg a : a \in F\}$ is an ideal.

- (7) Let A be an 8-element Boolean algebra. Find filters $F, F' \in A$ such that A/F is isomorphic to **2** and A/F' is isomorphic to **4**, where **2** and **4** are 2 and 4 element Boolean algebras, respectively.
- (8) Let A be a finite linear Heyting algebra (i.e., for each $a, b \in A$ we have $a \leq b$ or $b \leq a$).
 - (a) Characterize all (maximal, prime) filters and ideals of A.
 - (b) Describe all the homomorphic images of A.
- (9) Let (A,\Box) be a modal algebra. A filter $F\subseteq A$ is called a modal filter if for each $a\in A$

 $a \in F$ implies $\Box a \in F$.

Show that congruences of (A, \Box) are in one-to-one correspondence with modal filters of A. (You may assume the correspondence between Boolean congruences and filters.)

- (10) Let A be a Heyting algebra. Let $D = \{a \in A : \neg a = 0\}.$
 - (a) Show that D is a filter. Elements of this filter are called *dense elements*.
 - (b) Show that A/D is isomorphic to the Boolean algebra Rg(A) of all regular elements of A.
- (11) Let A be a Heyting algebra, $f : A \to B$ a homomorphism of Heyting algebras, F a filter on A, \sim_F the congruence associated to F, and $\pi : A \to A/\sim_F$ the quotient mapping. Show that the following are equivalent:
 - There is a morphism \overline{f} such that

commutes.

• For each $a \in F$, $f(a) = 1_B$.

Furthermore, show that the morphism \overline{f} is unique if it exists.